Gravity die casting aluminium

  • Fonderie coquille gravité de l'aluminium1
  • Fonderie coquille gravité de l'aluminium2
  • Fonderie coquille gravité de l'aluminium3

The gravity die casting process involves pouring a molten aluminum alloy with a ladle into a metal print which solidifies rapidly to form a workpiece.
  • This transformation process makes it possible to reproduce pieces of complex shapes with finely ribbed thin walls
  • Shell foundry parts require a high degree of finishing which includes a series of operations such as sawing of the jet and the pockets, grinding of the joint plane, heat treatment...
  • It is a fast and economical manufacturing process for the production in small and medium series of light alloy parts
  • One of these main advantages is to have a high repeatability and a high tool life

Characteristics of the aluminium used in gravity die casting

  • At equal volume, aluminum is 30% lighter than steel
  • Aluminum is an excellent conductor of temperature, 1.8 times better than copper
  • Some cast aluminum alloys can undergo a heat treatment that improves the mechanical characteristics
  • Recycling aluminum is easy and economical, environmentally friendly

 

The various aluminum alloys used in gravity die casting

Designation according to European Standard EN 1706 Mechanical characteristics1 N/mm² = 1MPa
Density State Rm N/mm² Rp 0.2 N/mm2 A% HB

ENAC-21000  Mini

AICu4MgTi

           

EN 1706  Maxi  

AU4GT

1ère fusion

 T4  320  200  8  95  2.80

 ENAC-41000  Mini

AlSi2MgTi

 F  170  70  5  50  

 EN 1706  Maxi  

AS2GT

1ère fusion

 T6  260  180  5  85  2.70

 ENAC-42000  Mini

AlSi7Mg

 F 170   90  2.5 55   

 EN 1706  Maxi  

AS7G

2ème fusion

T6  260  220   1  90  2.67

 ENAC-42100  Mini

AlSi7Mg0.3

           

EN 1706  Maxi  

AS7G0.3

1ère fusion

T6   290  210  4 90   2.67

ENAC-42100  Mini

67 XB (Pièces fines)

           

EN 1706  Maxi  

AS7G0.3

1ère fusion

T6 300 215 17.5 90 2.67

ENAC-42200  Mini

AISi7Mg0.6

           

EN 1706  Maxi  

AS7G0.6

1ère fusion

T6 320 240 3 100 2.67

ENAC-43100  Mini

AISi10Mg

F 180 90 2.5 55  

EN 1706  Maxi  

AS10G

2ème fusion

T6  260   220  1  90 2.66 

ENAC-44200  Mini

AISi12(b)

170   80  5  55  

EN 1706  Maxi  

AS12G

2ème fusion

           

ENAC-44200  Mini

43 X

F 150 80 4 60  

EN 1706  Maxi  

AS12

1ère fusion

          2.65

ENAC-51100  Mini

AIMg3 (pièces d'aspect)

F 150 70 5 50  

EN 1706  Maxi  

AG3T

1ère fusion

          2.67

 

Propriétés des alliages d'aluminium utilisés en fonderie coquille 

Désignation selon Norme Européene EN 1706 Flowa-bility Machina-bility Welda-bility Polishing Chroming Plating Tinning Paint (20 to 30 microns) Silvering
Gilding

Anodi-

sation

Corrosion

resistance

Filed of application
EN AC-43400 - AlSi10Mg(Fe) AS10G A B C B/C B B C B B E C Medium-sized parts, general mechanics
EN AC-43500 - AlSi10MnMg A B/C B D B B C B B E B Medium-sized parts, general mechanics
61 D1 (AS10G)       D B B C B B E   Security, automotive, household appliances
EN AC-44300 - AlSi12(Fe) AS12 A C D D B B C B B E C Very complex parts, general mechanics
EN AC-46000 - AlSi9Cu3(Fe) AS9U3 B B F C B B C B B E D Very Large Parts, Automotive, Household Appliances
EN AC-46200 - AlSi8Cu3 B B B C B B C B B E D Very Large Parts, Automotive, Household Appliances
EN AC-46500 - AlSi9Cu3(Fe)(Zn) B B F C B B C B B E D Very Large Parts, Automotive, Household Appliances
EN AC-47100 - AlSi12Cu1(Fe) AS12U A C F C B B C B B E C Medium and large series, automobile, general mechanics

Aptitudes : A = Excellent, B = Good, C = Fair, D = Poor, E = Not recommended, F = Inappropriate

The anodization of aluminum alloy castings can be carried out on alloys with a% Si content of <4%. Aluminum alloys have better resistance to corrosion if the% of Cu is <1% and the% of Zn is <0.5%

M.C.T. Can not be in any way responsible for the exploitation of the indicative data of this commercial document

Print Email

Gravity Die-Casting

  • Article fonderie coquille gravité
  • Article fonderie coquille gravité
  • Article fonderie coquille gravité
  • Article fonderie coquille gravité

The gravity die casting process consists of pouring a molten alloy with a ladle into a metal cavity that naturally solidifies to form a part.

  • This transformation process allows the reproduction of complex shaped parts with medium thin walls.
  • Shell castings require extensive finishing which includes a series of operations such as sawing of the die and pockets, grinding of the parting line, and in some cases heat treatment.
  • It is a fast and economical casting process for the production of small and medium series of light alloy parts.
  • One of the main advantages is the high repeatability and tool life.
  • For the casting of mechanically highly stressed parts, a heat treatable alloy can be chosen.
  • Precision in the dimensions of the parts.
  • Simplification and reduction of machining.
  • The possibility of using sand cores to make cavities in the parts. The sand cores included in the part will be broken by vibration and eliminated, freeing the cavity in the part.
  • Improved mechanical properties compared to sand casting. These improvements are due to the faster cooling of the alloy cast against the metal walls of the mold.
  • Tooling costs are reduced because unlike die casting, complex molds do not need to be perfectly closed.
image_fonderie_coquille
Here is the example of an aluminum part of diameter 380mm of 3 kg which weighs with its power supply and its pockets of compensation (of green color) more than 5.5 kg.
 

The metal alloys used in gravity die casting are the following:

Print Email